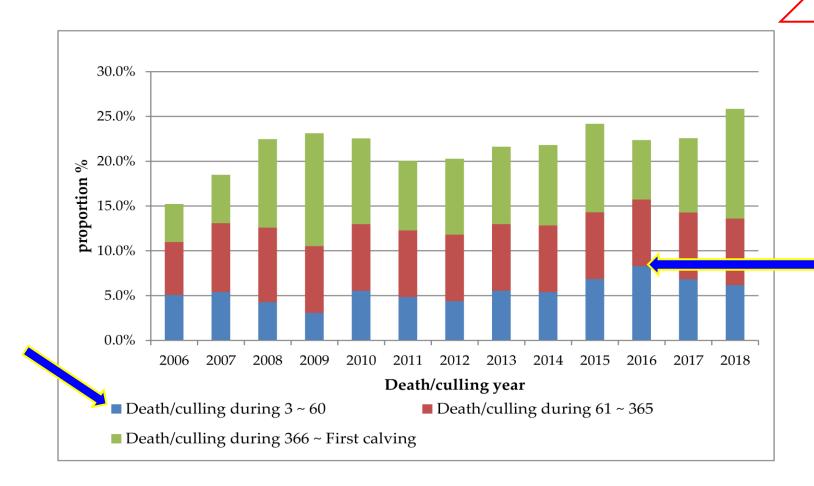


Performance of preweaning dairy calves fed milk replacer supplemented with increasing doses of ethyl esters of polyunsaturated fatty acids of linseed oil

Mohammed K. Baba *, Jadwiga Flaga, Kinga Dziadek, Katarzyna Dudek and Zygmunt M. Kowalski


- · Presenting author
- Abstract #73047544

Department of Animal Nutrition and Fisheries

University of Agriculture in Krakow Krakow, Poland

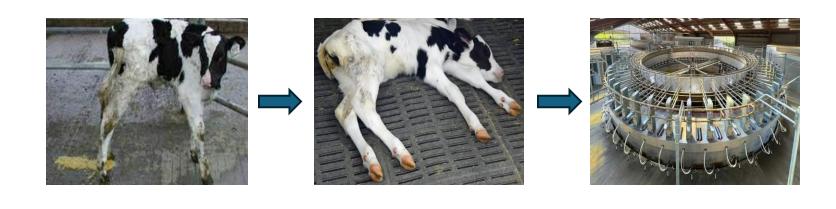
3rd EAAP Regional Meeting Animal Production in the Changing World Krakow, Poland

Morbidity and mortality of calves are still a challenge in the dairy herd

> Up to around 8% Removed due to death or disease

Zhang et al., 2019

The early life stages of dairy calves play a critical role in their health, future yield, and longevity in the cattle herd (van Niekerk et al., 2021)



Healthy & strong calf

Matured dairy heifers

Milking parlour filled with cows including new heifers

Sick and weak calf (morbidity)

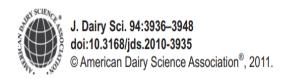
Overcomed by disease and died (mortality)

Empty milking parlour

Calves are faced with calving stress, gastrointestinal, respiratory diseases along with environmental and dietary problems (Lorenz et al., 2010)

Retarded growth and health that has negative impacts on their future productivity and farm income (Soberon and van Amburgh 2013; Fabianowska et al., 2023)

Proper nutrition including the use of PUFA can solve the problem due to its anti-inflammatory and antioxidative benefits



PUFA enrichment can proffer beneficial effects to the health, growth performance, and the resilience to diseases in calves (Karcher et al., 2014; Flaga et al., 2019; Melendez et al., 2022; Baba et al., 2024)

Research results suggest that

Calves feeding with milk replacer enriched with source of polyunsaturated fatty acids (PUFA) Increased immunity, antioxidants and health

Milking parlour filled with cows including new heifers

Fatty acid intake alters growth and immunity in milk-fed calves

T. M. Hill,*1 M. J. VandeHaar,† L. M. Sordillo,‡ D. R. Catherman,§ H. G. Bateman II,* and R. L. Schlotterbeck* *Nurture Research Center, Provimi North America, Lewisburg, OH 45338 †Department of Animal Science, and ‡Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824 §Strauss Feeds, Watertown, WI 53098

http://dx.doi.org/10.3168/jds.2013-7473 © American Dairy Science Association®, 2014.

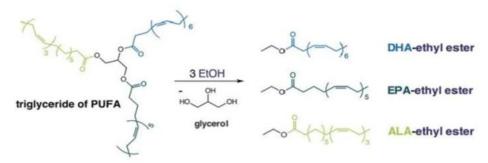
Effect of supplementing essential fatty acids to pregnant nonlactating Holstein cows and their preweaned calves on calf performance, immune response, and health

M. Garcia,* L. F. Greco,* M. G. Favoreto,* R. S. Marsola,* D. Wang,* J. H. Shin,* E. Block,† W. W. Thatcher,* J. E. P. Santos, and C. R. Staples 1

*Department of Animal Sciences, University of Florida, Gainesville 32608 †Arm and Hammer Animal Nutrition, Princeton, NJ 08543

Effects of n-3 fatty acids on growth, antioxidant status, and immunity of preweaned dairy calves

K. Śpitalniak-Bajerska, A. Szumny, K. Pogoda-Sewerniak, and R. Kupczyński * Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 51-630 Poland ²Department of Chemistry, Wroclaw University of Environmental and Life Sciences, 51-630 Poland


Studies on feeding of PUFA to calves in oil form; biohydrogenation and stability are the concern

A study on ethyl esters of PUFA of linseed oil (EEPUFALO) Limited by few animals and confounding effect of dried apples

Reaction of trans-esterification of triglyceride and ethanol

Oils vs. EEPUFA as feed additives for calves

Oils

Not easily mixed/blended with milk replacer

Biohydrogenation

May contain other substances, e.g. toxic alcaloids

Proportion of FA not easily modified

EEPUFA

Easily mixed/blended with milk replacer

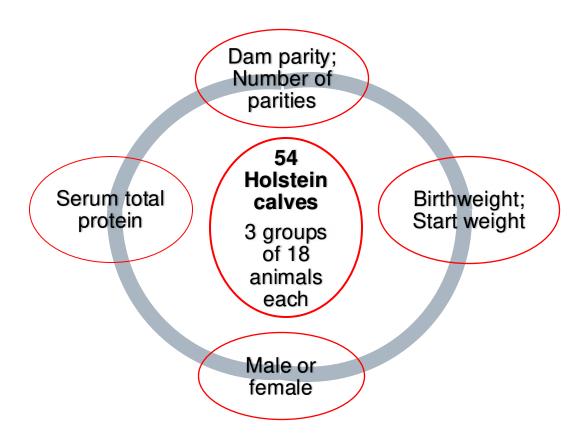
No biohydrogenation

Contain only FA

Proportion of FA can be easily modified

Hypothesis and objectives

- We hypothesized that
 - adding EEPUFALO to milk replacer will promote the health and performance of pre-weaned dairy calves, and
 - the effects depend on the dose of EEPUFALO


 The objective of the study was to determine the health and performance of pre-weaned dairy calves fed MR containing increasing doses of EEPUFALO

PUFA

Milking parlour filled with cows including new heifers

- Approved by local ethics committee in Krakow, Poland
- Experiment conducted at a commercial farm

Milk replacer + 0 ml/d of EEPUFALO Milk replacer + 15 ml/d of EEPUFALO Milk replacer + 30 ml/d of EEPUFALO

Feed intake

From 5 to 56 days of life

Control of feeds (milk replacer and calf starter) served and refused (checked everyday)

Health status

Number of animals sick, fecal scores (1-4 points), number of days receiving treatment, days when sick (checked everyday)

Body weights and measurements

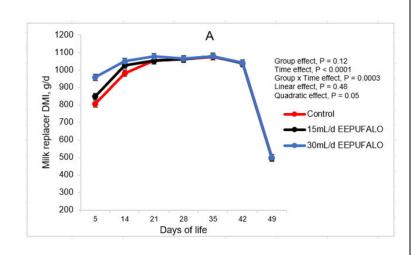
Body weight (kg), body weight gain (g), hip width, hip height, heart girth, and withers height (cm) (checked weekly)

Statistical analysis

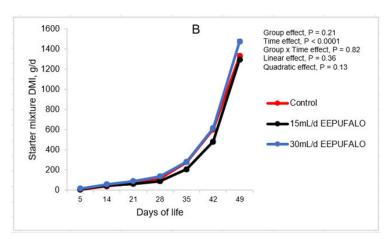
Proc Glimmix of SAS (2013)

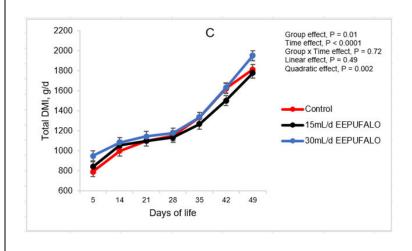
$$Y_{ij}k = \mu + G_i + T_j + GT_i + \varepsilon_{ijk}$$
 (1)

where $Y_{ij}k$ was the dependent variable; μ was an overall mean; Gi is the group effect (3 groups); T_j (sampling time); GT_{ij} was the group effect × time, and ϵ_{ijk} was the random residual error

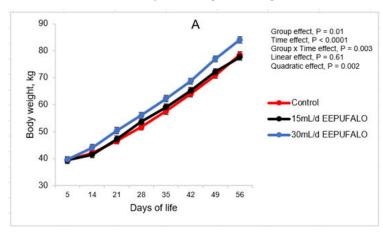

$$Y_{ij} = \mu + G_i + \varepsilon_{ij} \tag{2}$$

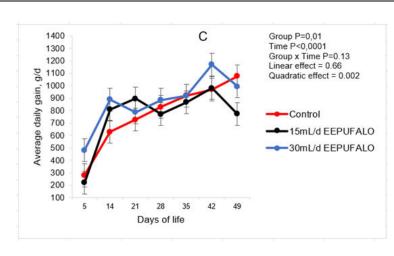
where Y_{ij} was the dependent variable; μ was an overall mean; Gi is the group effect (3 groups); and ϵ_{ij} was the random residual error


Kruskal Wallis test (3) performed for health indicators parameters


Results

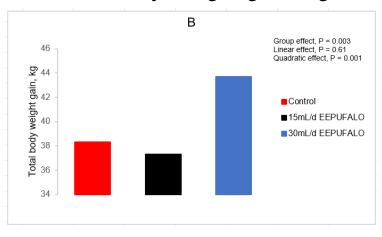
Milk replacer DMI, g/d

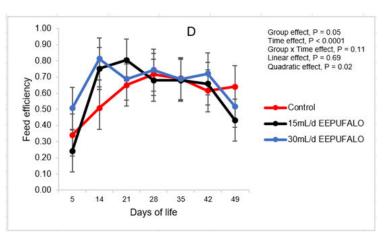

Starter DMI, g/d



Total DMI, g/d

Results


Body weight, kg



Daily body weight gain, kg

Total body weight gain, kg

Feed efficiency, gain/intake

Table 1. Least square means of the effects of ethyl esters of polyunsaturated fatty acids of linseed oil (EEPUFALO) supplemented to milk replacer (MR) on feed intake, growth and morphometric measurements of dairy calves.

Items	Groups ¹			SEM ²	Effects, P-value			Polynomial contrasts, P-value	
	Control	D1	D2		Group	Time ³	Group x Time 4	Linear	Quadratic
Initial hip height, cm 5	82.15	83.14	82.38	0.76	0.58			0.32	0.76
Final hip height, cm 5	95.24	95.36	96.63	0.46	0.04			0.84	0.01
Total hip height gain, cm 5	12.89	12.23	14.20	0.71	0.10			0.47	0.04
Initial hip width, cm 5	17.15	17.13	17.41	0.31	0.74			0.97	0.44
Final hip width, cm 5	21.25	21.27	21.85	0.20	0.04			0.94	0.01
Total hip width gain, cm 5	4.05	4.14	4.42	0.36	0.71			0.85	0.42
Initial heart girth, cm 5	78.88	78.91	79.61	0.51	0.46			0.96	0.21
Final heart girth, cm 5	98.64	99.27	102.11	0.72	< 0.0001			0.50	< 0.0001
Total heart girth gain, cm 5	19.56	20.37	22.44	0.79	0.02			0.43	0.01
Initial withers height, cm 5	78.72	79.88	78.33	0.75	0.27			0.24	0.26
Final withers height, cm 5	90.11	91.50	92.66	0.60	0.01			0.08	0.01
Total withers height gain, cm 5	11.18	11.63	14.28	0.73	< 0.0001			0.65	< 0.0001
Hip height gain, cm/week 6	1.85	1.75	2.03	0.09	0.09	0.88	0.61	0.46	0.04
Hip width gain, cm/week 6	2.78	2.91	3.20	0.11	0.73	< 0.0001	0.93	0.79	0.46
Heart girth gain, cm/week 6	0.59 b	0.61 ab	0.64 a	0.05	0.02	0.01	0.12	0.38	0.01
Withers height gain, cm/week 6	1.60 b	1.65 ^b	2.04 a	0.10	0.004	0.08	0.64	0.75	0.001

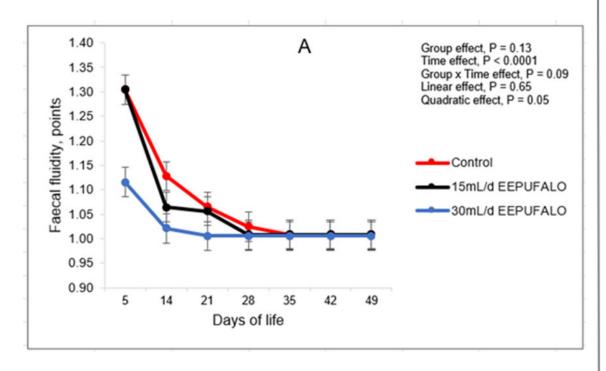
¹ Control – no EEPUFALO, D1 – 15 mL of EEPUFALO/d supplemented to MR, D2 – 30 mL of EEPUFALO/d supplemented to MR.

² SEM - Standard error of means.

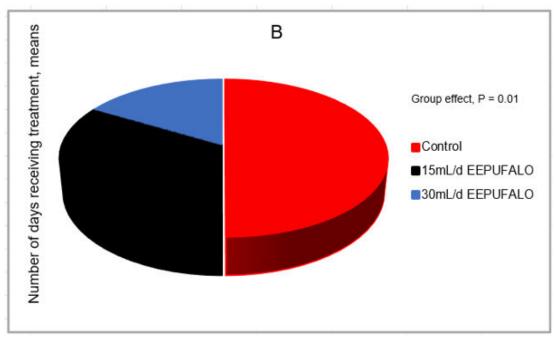
³ Days of life of the calves.

⁴ Interaction Group x Time.

⁵Data subjected to the analysis of variance without repeated measures of time.


⁶ Data were subjected to the analysis of variance with repeated measures of time.

⁷ Calculated as the ratio of average daily gain, g/d to average daily total DMI, g/d.


a, b, LSMeans marked by different superscripts differ at P < 0.05 and tendencies at 0.05 < P < 0.10

Results

Fecal fluidity, points

Number of days receiving treatments, means

Conclusion

The addition of up to 30 mL/d of EEPUFALO to the milk replacer of dairy calves proves to enhance their health and performance

M. K. Baba^{1,2}, J. Flaga¹, K. Dziadek³, K. Dudek⁴, Z. M. Kowalski¹

¹ University of Agriculture in Krakow, Department of Animal Nutrition and Fisheries,, Al. A. Mickiewicza 24/28, 31-059 Krakow, Poland, ² Nasarawa State University Keffi, Department of Animal Science, Faculty of Agriculture, Shabu-Lafia Campus, 911019 Keffi, Nigeria, ³ University of Agriculture in Krakow, Department of Human Nutrition and Dietetics, Balicka 122, 30-149 Krakow, Poland, ⁴ National Veterinary Research Institute, Department of Cattle and Sheep Diseases, 57 Partyzantow Avenue, 24-100 Pulawy, Poland

Thank you for your attention!