

3rd EAAP Regional Meeting 2025

University of Agriculture, Krakow, Poland "Animal nutrition and nutrigenomics"

Phytobiotic effect of *Anacardium occidentale powder* on performance, gut health, diarrheal syndrome and anti-inflammatory and immune response of weaned piglets

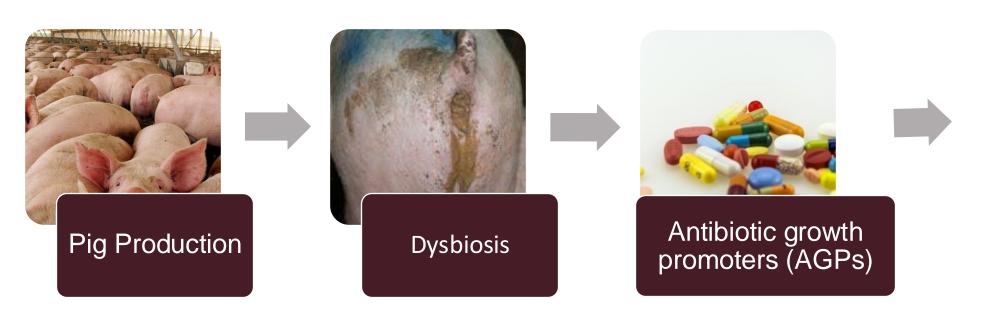
Yordan Martínez^{1*}, Roisbel Aroche^{2,3}, Roman Rodríguez⁴, Xilong Li²

¹Animal Nutrition, Institute of Agrifood Research and Technology

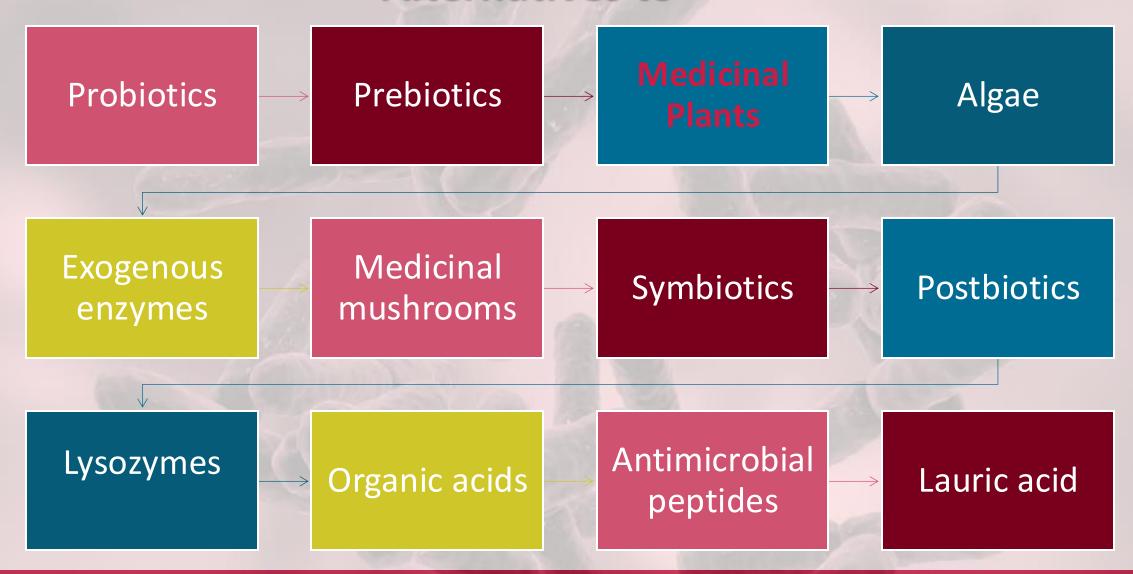
IRTA, 43120 Constantí, Spain

²Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China

³Department of Animal Husbandry, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba


⁴Animal Production Study Center, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba

*yordan.martinez@irta.cat

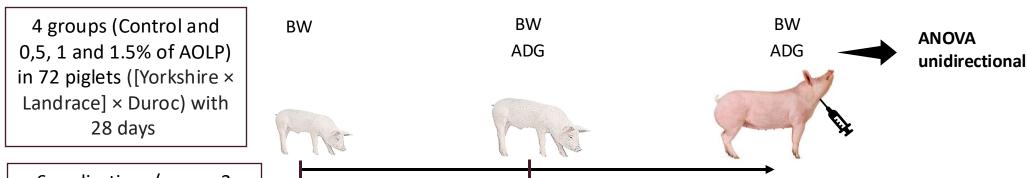

INTRODUCTION

Intensive Animal Production System

Alternatives to AGPs

Phytogenic additives

Anacardium occidentale


Anti-inflammatory, antibacterial, analgesic, anticoagulant, antispasmodic and astringent properties

To evaluate the effect of dietary supplementation with *Anacardium* occidentale powder on the growth performance, diarrhea incidence, blood biochemistry, and intestinal traits of weaned piglets.

Materials and Methods

Day 14

6 replications/group, 3 animals/replication

Plasma samples for antioxidant indices and immunoglobulin content

3 cm of duodenum, jejunum, and ileum for morphology

Mucosa from jejunum and ileum for RNA extraction

Fecal samples for digestibility, VFA and Microbiota Diversity

Day 0

T-Test for independent samples

Diarrhea incidence according to fecal scores assessed daily/animal

Five-point fecal consistency scoring system:

- 1 = hard, dry stools
- 2 = firm, formed stool
- 3 = soft, moist stools that retain their shape
- 4 = loose, shapeless stools
- 5 = aqueous liquid that can be poured

Stools of liquid consistency (score 4 and 5) were considered diarrhea

Day 28

$$DI = \frac{\text{Number of diarrhe}as}{\text{Animal number x Total Days}} \times 100$$

The differences were considered statistically significant at P \leq 0.05, while the treatment effect was identified as a trend at 0.05 < P \leq 0.10

Chi-square

Tukey for

multiple tests

Previous results

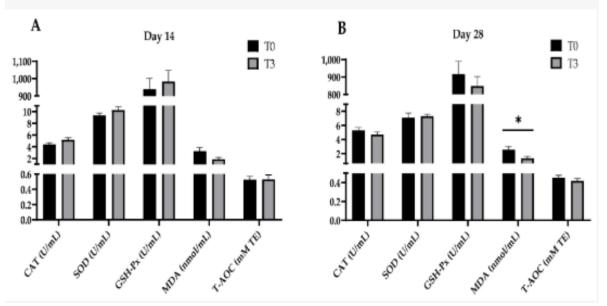
Secondary metabolite profile of *A. occidentale* powder

Compounds	Mean (n=3)	SD (±)	CV (%)
Quercetin 3-O-glucoside-7-O-	0.54		
rhamnoside		0.025	4.630
Chicoric acid	0.62	0.037	5.968
Kaempeferol-7-O-glucoside	1.95	0.115	5.897
Quercetin	10.25	0.544	5.307
Caffeic acid	0.22	0.008	3.636
Cinnamic acid	0.25	0.012	4.848

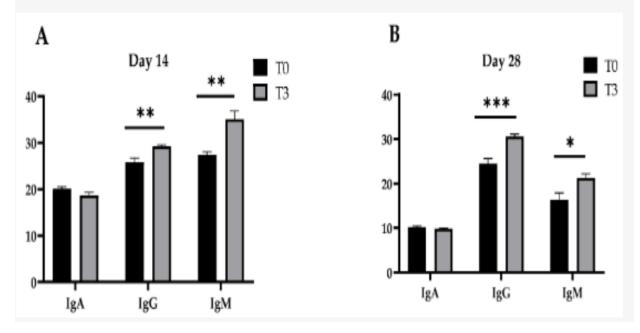
Table 3. Effect of dietary supplementation with AOLP on growth performance of weaned piglets.

Experimental Treatments								
Items T0 T1 T2 T3 S	то.	T4			CEN	p-Value		
	SEM	ANOVA	Linear	Quadratic				
Body Weight (kg)								
Day 0	8.03	8.03	8.03	8.03	0.31	1.000	0.953	0.988
Day 14	10.72	10.68	10.50	10.59	0.32	0.952	0.666	0.835
Day 28	14.19	14.32	14.16	15.46	0.52	0.458	0.230	0.384
Average Daily Gain (g)								
Days 0-14	192	189	177	183	9.59	0.951	0.655	0.838
Days 14-28	248	260	261	348	24.54	0.478	0.195	0.461
Days 0-28	220	225	219	265	11.41	0.441	0.222	0.372
Average Daily Feed Intake (g)								
Days 0-14	267	299	261	251	10.38	0.484	0.417	0.354
Days 14-28	449	495	474	598	28.39	0.147	0.054	0.404
Days 0-28	358	397	368	425	13.99	0.233	0.132	0.720
Gain–Feed Intake Ratio								
Days 0-14	0.72	0.63	0.65	0.73	0.02	0.096	0.722	0.017
Days 14-28	0.46	0.51	0.55	0.58	0.03	0.717	0.266	0.869
Days 0-28	0.60	0.57	0.60	0.63	0.02	0.793	0.511	0.497

T0: control; T1: 5 g/kg of AOLP; T2: 10 g/kg of AOLP; T3: 15 g/kg of AOLP. SEM = standard error of the mean.


Table 4. Effect of dietary supplementation with AOLP on diarrhea incidence of weaned piglets (%).

Experimental Treatments							
Items	T0	T1	T2	Т3	p-Value		
Days 0-14	6.35	5.16	5.15	9.92	0.106		
Days 14-28	18.47 a	8.33 b	9.35 b	5.60 b	<0.001		
Days 0–28	12.63 a	7.00 b	7.50 b	8.16 b	0.007		


 a,b : mean values with different superscript letters within a row were significantly different (p < 0.05). T0: control; T1: 5 g/kg of AOLP; T2: 10 g/kg of AOLP; T3: 15 g/kg of AOLP.

Antidiarrheal properties

Figure 1. Effect of dietary supplementation with AOLP on plasma antioxidant indexes of weaned piglets on day 14 (**A**) and day 28 (**B**). Results are presented as mean \pm SEM; n = 6. * p < 0.05 indicates difference between treatments. T0 = control group; T3 = group supplemented with 15 g/kg AOLP; CAT = catalase; SOD = superoxide dismutase; GSH-Px = glutathione peroxidase; MDA = malondialdehyde; and T-AOC = total antioxidant capacity.

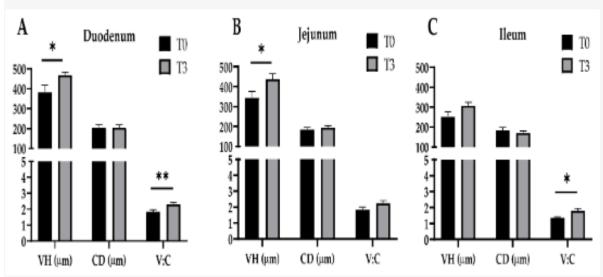
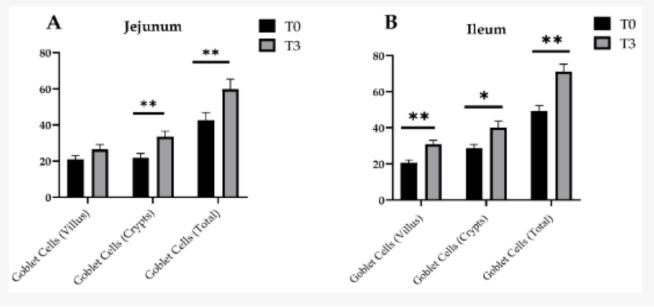


Figure 2. Effect of dietary supplementation with AOLP on plasma immune concentration (mg/mL) of weaned piglets on day 14 (**A**) and day 28 (**B**). The results are presented as mean \pm SEM; n = 6. * p < 0.05; ** p < 0.01; and *** p < 0.001 indicate difference between treatments. T0 = control group; T3 = group supplemented with 15 g/kg AOLP.



Antioxidant and immunomodulatory properties

Figure 3. Effects of dietary supplementation with AOLP on morphology of duodenum (**A**), jejunum (**B**), and ileum (**C**) of weaned piglets. VH, villus height; CD, crypt depth; V–C, villus height-to-crypt depth ratio. Results are presented as mean \pm SEM; n = 6. * p < 0.05 and ** p < 0.01 indicate difference between treatments. T0 = control group; T3 = group supplemented with 15 g/kg AOLP.

Figure 4. Effects of dietary supplementation with AOLP on number of goblet cells of jejunum (**A**) and ileum (**B**) of weaned piglets. Results are presented as mean \pm SEM; n = 6. ** p < 0.01 and * p < 0.05 indicate difference between treatments. T0 = control group; T3 = group supplemented with 15 g/kg AOLP.

Better gut health

Figure 5. Effects of dietary supplementation with AOLP on intestinal Mucin2 area. Results are presented as mean \pm SEM; n = 6. * p < 0.05 indicates difference between treatments. T0 = control group; T3 = group supplemented with 15 g/kg AOLP.

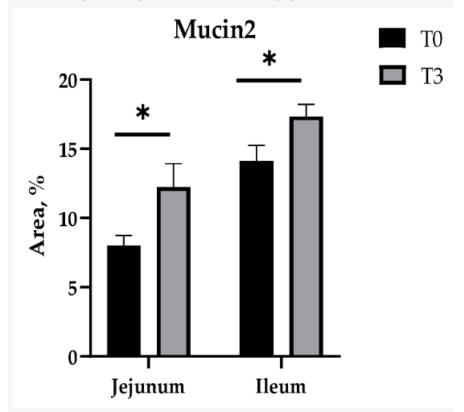
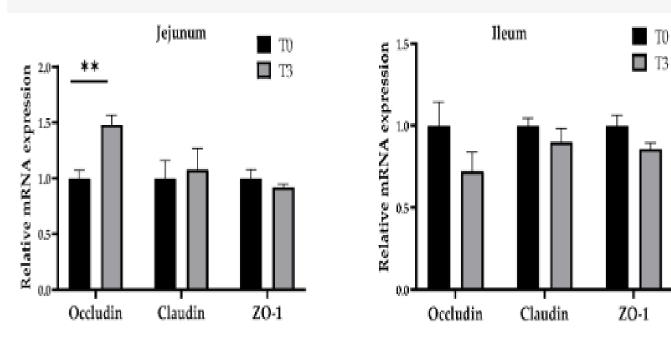



Figure 6. Effects of dietary supplementation with AOLP on mucosal relative gene expression in jejunum and ileum. Results are presented as mean \pm SEM; n = 6. ** p < 0.01 indicates difference between treatments. T0 = control group; T3 = group supplemented with 15 g/kg AOLP.

Intestinal permeability

Figure 7. Effect of dietary supplementation with AOLP on fecal microbiota of weaned piglets (n = 6). (A) Venn diagram of genera in fecal samples. (B) Non-metric multidimensional scaling on genus level. (C) Principal coordinate analysis. (D) Wilcoxon rank—sum test bar plot on genus level and (E) amplicon sequence variants (ASV) level. T0 = control group; T3 = group supplemented with 15 g/kg AOLP.

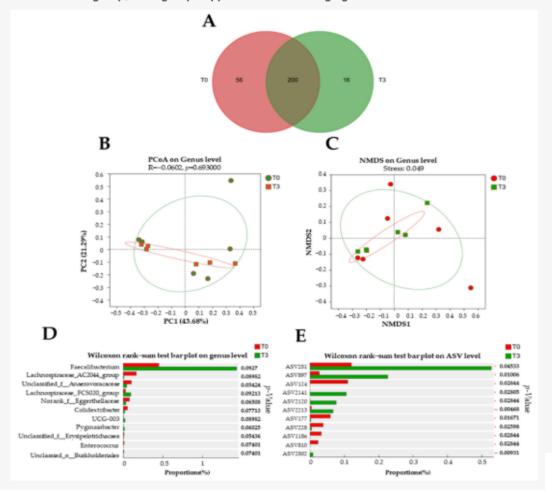


Figure 8. Effect of dietary supplementation with AOLP on relative abundance of gut microbiota at genus level.

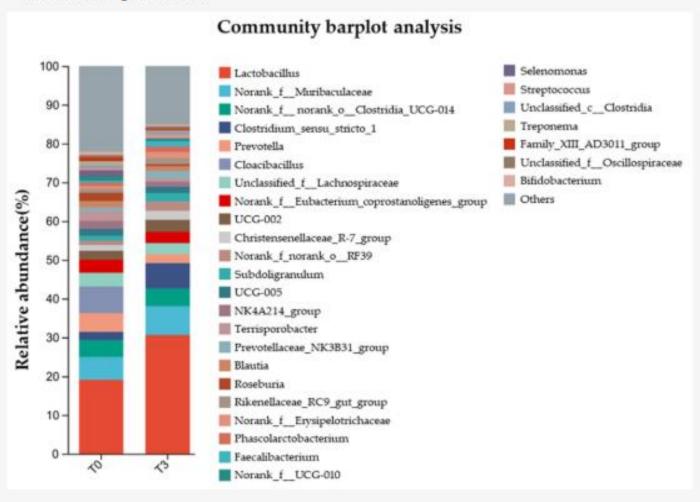
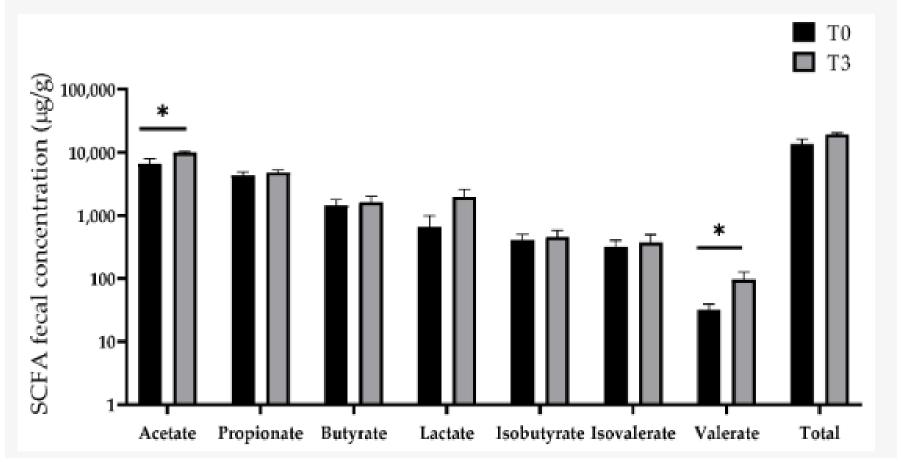



Figure 9. Effect of dietary supplementation with AOLP on SCFA production of weaned piglets. Results are presented as mean \pm SEM; n = 6. * p < 0.05 indicates difference between treatments. SCFA = short-chain fatty acid.

Conclusions

Dietary supplementation with AOLP in weaned piglets decreased the diarrhea incidence, without changing the productivity of the pigs. Dietary supplementation with 1.5% of AOLP decreased the plasma concentration of MDA and increased the concentrations of IgG and IgM, as well as improving the intestinal integrity and the production of acetate and valerate in the large intestines of the pigs.

Acknowledgements:

This study was financially supported by the Science and Technology Program of Shijiazhuang City (236490539A), the Agricultural Science and Technology Innovation Program of the Institute of Feed Research of the Chinese Academy of Agricultural Sciences (CAAS-IFR-ZDRW202302), and the Central Public-interest Scientific Institution Basal Research Fund (1610382024005).

