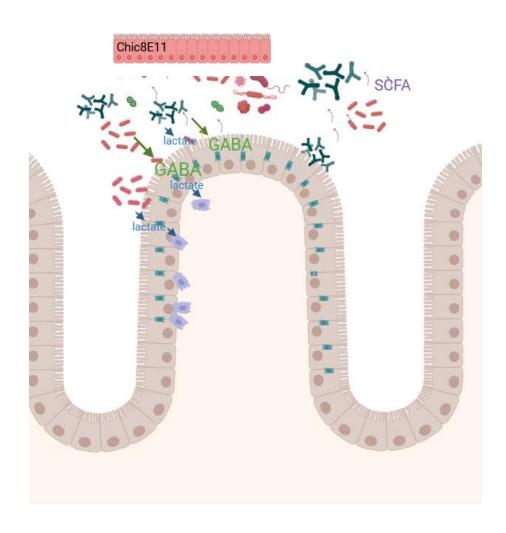


In Ovo translational model for functional assessment of probiotics through metabolome analysis

K. Stadnicka¹, S. Zuo¹, E. Samborowska², M. Radkiewicz², K. Grudlewska-Buda¹, K. Skowron¹

¹Nicolaus Copernicus University, Collegium Medicum, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland ²IBB Polish Academy of Sciences, Mass Spectrometry Laboratory, , Pawińskiego 5A, 02-106 Warsaw, Poland



Chic8F11

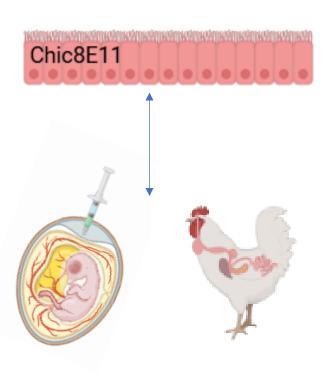
Background

Candidate/ probiotics, beneficial microbial products, phytobiotics, have known benefits but mechanism unclear

Gap in knowledge and techniques → need for translational models linking *in vitro* and *in vivo* effects

→ evidence-based development of strategies to manage health by nature based solutions: bioactive compounds, immunomodulators

In vitro tests → early life/prenatal treatment → life long track of effects



Study Objectives

Study Objectives

- •Characterize metabolite changes in **chicken intestinal cell line** (Chick8E11) treated with *Bifidobacterium lactis* NCC2818 [Akhavan et al., 2023, Frontiers in Microbiology]
- •Analyze metabolome changes in **gut content** of chickens injected *in ovo* with *B. lactis* alone or in a synbiotic combination of *B. lactis* with Astragalus polysaccharides synbiotic (Xi'an Weizhen Biotechnology Co., Ltd.)
- •Establish correlations between in vitro and in ovo/in vivo models
- •Identify key metabolic pathways affected by probiotic treatment

Material and methods

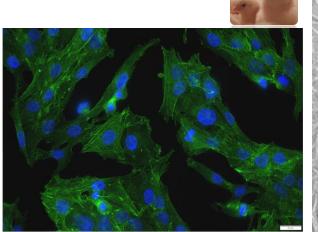
The pairs of candidate probiotic (n=2) and prebiotic (n=2) compounds were selected *in vitro* by testing 12 prebiotics and 12 probiotics:

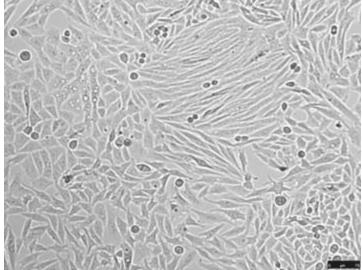
Candidate Prebiotics	Candidate Probiotics		
P1 Beta glucan	Lactobacillus plantarum	٤	
P2 Vegetable protein hydrolysate	<u>Bifidobacterium lactis</u>	600 nm	
P3 Liquid seaweed extract	Lactobacillus rhamnosus		
P4 Short chain inulin	Lactobacillus plantarum	Mean value optical density n=	
P5 Long chain inulin	Carnobacterium divergens		
P6 Raffinose	Propionibacterium thoenii		
P7 Galactooligosaccharides	Clostridium butyricum		
P8 Snow crab chitooligosaccharides	Bacillus strain (5 were tested)	Me	
P9 Saccharicterpenin			
P10 Lentinus			
P11 Mannan oligosaccharides	P1: F981M156B, P2: B001P335, P3:		
P12 Astragalus polysaccharides	A114P252 (BioAtlantis Ltd.)		

The one-way ANOVA with Tukey's test as post hoc (Newman-Keuls) comparisons ($p \le 0.05$). Blue arrows show stimulation of the probiotic growth and red arrows show the inhibition of the probiotic growth compared to the control variant (C: Control with glucose)

©vobi dm

Material and methods

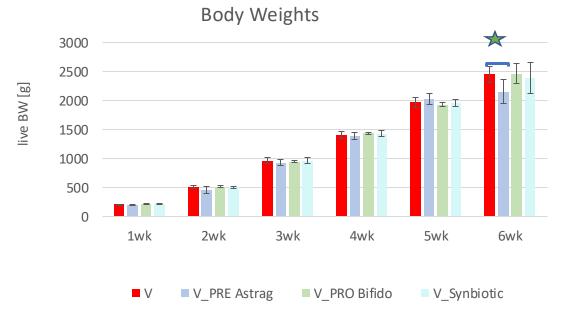

<u>Co-cultures:</u> The intestinal cells (Chic-8E11, Tentamus Pharma & Med Deutschland GmbH) were inoculated with the Bifidobacterium lactis (10:2 [CFU: cells] ratio) and cell free supernatants (CFS, at 20% v/v) derived from probiotic cultures that were adjusted to 10⁶ CFU


The *Bifdobacterium* CFS were produced by collecting the probiotic culture supernatants followed by centrifugation at 10,000 x g for 10 min and filtration through a $0.45 \mu m$ pore size filters (Millipore, Merck Group, Poland)

Co-cultures were maintaned for 24h at 37°C, 5% CO_2 in in a complete DMEM/F12 medium, 3 independent experiments (biological repetitions) per each combination

targeted metabolomic analysis protocol of the MxP[®] Quant 500 kit (Biocrates, Austria)

⊘vobi⊘m


Material and methods

In ovo injections were performed automatically to the amnion, using the Vinovo vaccination technology (Contributor: Viscon Group, Gravendeel The Netherlands). All the embryos were vaccinated (IBD, Phivax)

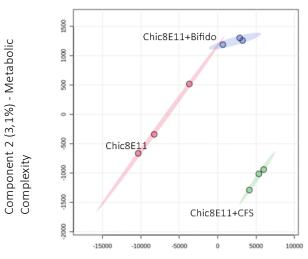
50 μl/egg,140 eggs/group18.5 day of embryonic incubation

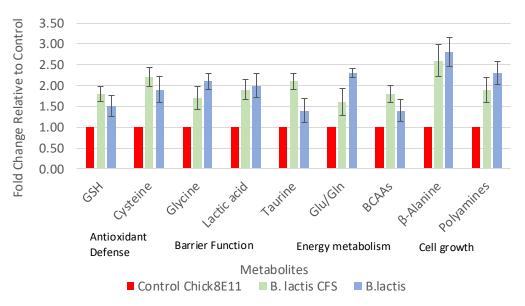
Control

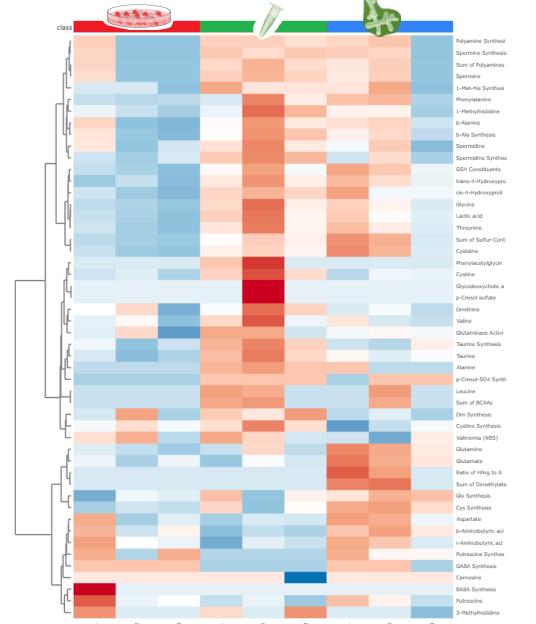
Prebiotic 1mg AP

Probiotic B. Lactis 10⁶ CFU

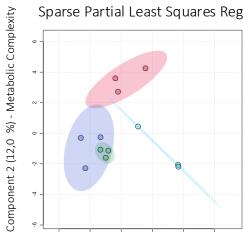
Synbiotic 10³ CFU B. lactis + 1 mg AP


(4 replicates per group, 15 birds per pen) with females only


Collegium Medicum in Bydgoszcz



Component 1 (95,8%) - Metabolic Variation Score

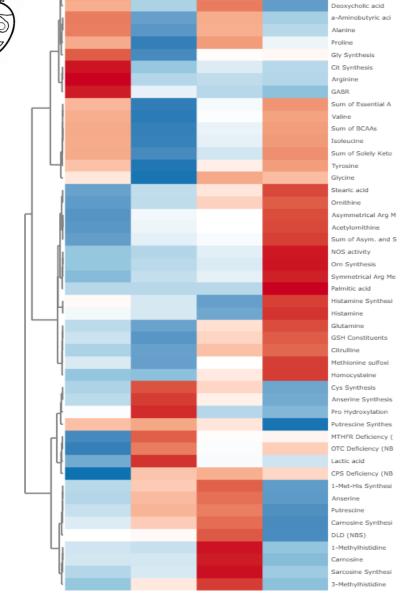

)vobi⊘m

In ovo metabolomic profiles confirm treatment effects

Collegium Medicum in Bydgoszcz

Xanthine Synthesis Ratio of Pro to Ci

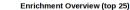
Sparse Partial Least Squares Regression-DA plot

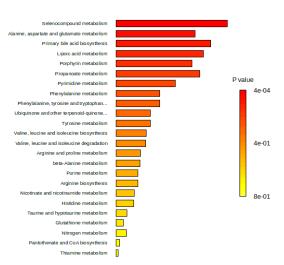

Control Probiotic B. Lactis 10⁶ CFU Prebiotic 1mg AP

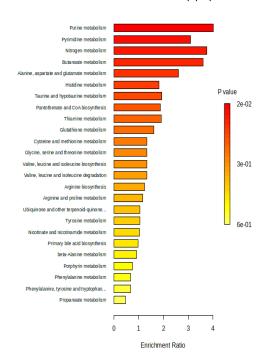
Synbiotic 10³ CFU B. lactis + 1 mg AP

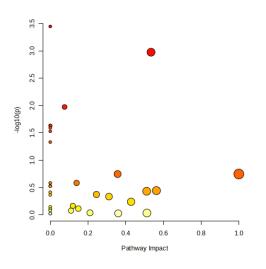
- →distinct metabolic signatures for each treatment group
- → treatment-specific metabolite clustering patterns
- → synbiotic treatment provides the most balanced metabolic profile
- → changes represent metabolic adaptations rather than clear "beneficial" or "harmful" effects

Component 1 (13,6%) - Metabolic Variation Score

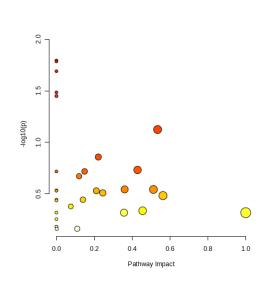

Metabolite Class	Metabolite	Probiotic	Prebiotic	Synbiotic	Functional significance	
Antioxidants	GSH constituents	++	++	+++	Cellular protection, detoxification	
	Cysteine synthesis	+++	+	++	Supports antioxidant production	
Amino Acids	Citrulline	+	++	+++	Nitric oxide (NO) cycle, mucosal barrier regulation	
	Ornithine	+	++	+++	Ammonia detoxification	
Energy metabolism	Lactic acid	+++	+	++	Antimicrobial, energy substrate	
	Glutamine	+	++	+++	Primary enterocyte fuel	
Barrier function	Anserine synthesis	+++	+++	+	Antioxidant, pH buffering	
	Pro hydroxylation	+++	++	++	Collagen stability	
Lipid metabolism	Fatty acids	+	++	+++	Membrane integrity, signaling	
Bile Acids	Deoxyholic acid	+	++	+	Reduced inflammation	




Key metabolic pathways affected across models

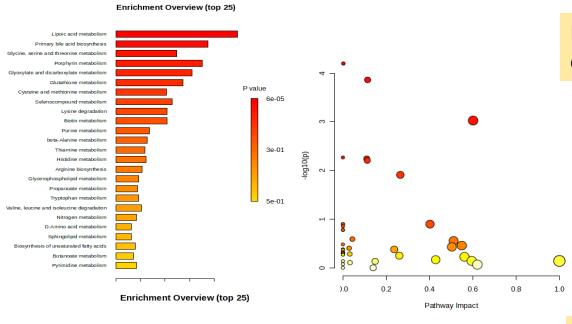


Enrichment Overview (top 25)


Pathways affected between control cells and cells treated with Bifidobacterium lactis CFS

→ most significant pathways: amino acid metabolism, TCA cycle

Pathways affected between control cells Chic-8E11 and cells co-cultured with *Bifidobacterium lactis*



→ differential activation patterns between direct contact vs. supernatant

©vobi⊘m

Key metabolic pathways affected across models

Metabolic pathways affected by differential metabolite enrichment between *in ovo* control and *Bifidobacterium* probiotic

← probiotic-specific pathway activation

Metabolic pathways affected by differential metabolite enrichment between control and synbiotic group (10³ CFU Bifidobacterium + 1 mg Astragalus polysaccharides),

Presrystantine metabolism
Propanoate metabolism
Propanoate metabolism
Prophyrin metabolism
Fatty acid elongation
Biosynthesis of unsaturated fatty acids
Citrate cycle (TCA cycle)
Pyrimidine metabolism
D-Amino acid metabolism
Butanoate metabolism
Selenocompound metabolism
Thiamine metabolism
Nitrogen metabolism
Nitrogen metabolism
Lysine degradation
Biotin metabolism
Etysine degradation
Biotin metabolism
D-Sitrogen metabolism
Nitrogen metabolism
District of the cycle of

Enrichment Ratio

Pathway Impact

- ← synergistic effects not seen in single treatments
- ← consistent metabolic pathway activation patterns across experimental models with enhanced effects in synbiotic treatment

Translational Model Validation

Validating the translational model: In Vitro to In Ovo

000000

Key metabolite comparison table

Metabolite Class	Key Metabolites	In Vitro Model	In Ovo Model	Functional Significance
Carboxylic Acids	Lactic acid	个 in co-culture	↑ in probiotic group	Antimicrobial, energy source
	Succinate	个 in co-culture	↑ in probiotic & synbiotic	Energy metabolism, homeostasis
Antioxidants	GSH constituents	↑ in both treatments	个个 in synbiotic group	Cellular protection, detoxification
	Cysteine	↑ in both treatments	↑ in probiotic group	Host's antioxidant defense capacity
Amino Acids	Glutamine/Glutamate	↑ in both treatments	个个 in synbiotic group	Enterocyte energy, barrier function
	Ornithine	个 with supernatant	个个 in synbiotic group	
Growth Factors	Polyamines	↑ in both treatments	↑ in probiotic & synbiotic	Cell growth, differentiation
	β-Alanine	↑ in both treatments	↑ in probiotic group	Carnosine synthesis

- → Metabolite consistency
- → Pathway conservation
- → Model complementarity

Translational model validation

Functional significance of metabolic alterations

In vitro specific

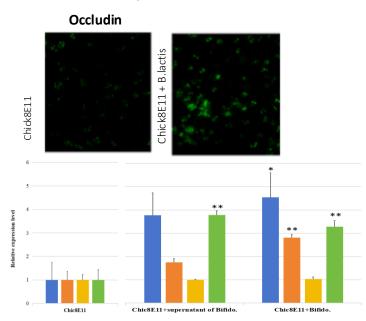
Direct cellular responses
Immediate metabolic changes
Tight junction regulation

Shared metabolic pathways

AA metabolism
TCA cycle
Antioxidant pathways
Polyamine synthesis
Lactic acid production
Barrier function
Metabolites

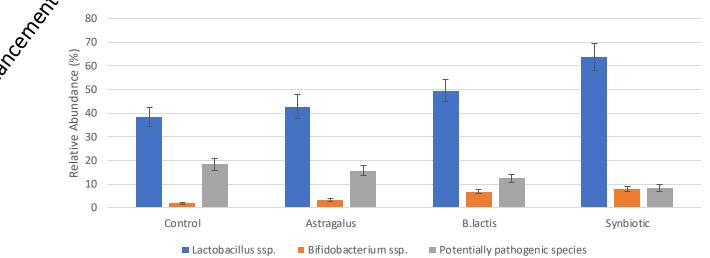
In ovo specific

Bile acid metabolism
Microbial community interactions
Host immune modulation


Functional significance

Integrating Metabolomics & Metagenomics

Enhanced intestinal barier integrity


In vitro study:

Lactobacillus → GABA

Villin

CK18

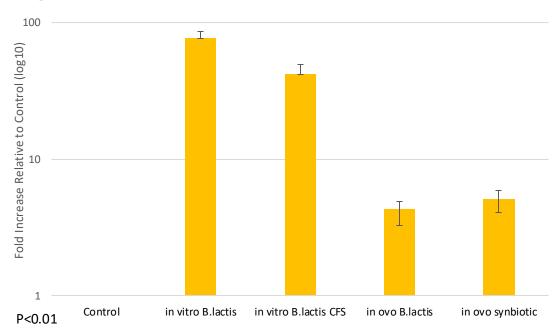
Zona occludens

Occludin

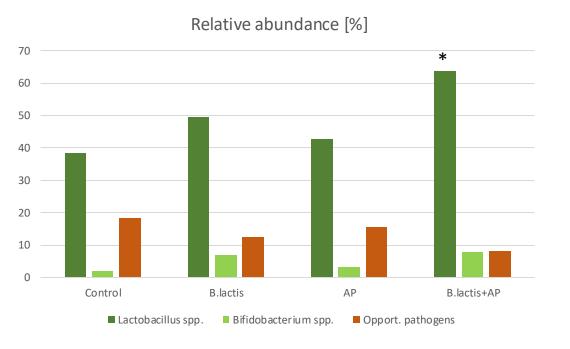
MECHANISM:

- Occludin gene significantly up-regulated (p<0.01) in Chick-8E11 cells with *B. lactis* treatment
- GABA production (\uparrow 5.2-fold, p<0.05)
- Lactobacillus strengthens tight junctions through occludin expression
- Synbiotic treatment increases beneficial Lactobacillus abundance that directly supports barrier function

*


Functional significance

Anti-inflammatory effects

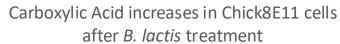

Metabolomic evidence:

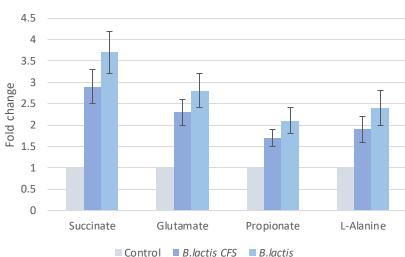
Significant lactate elevation with *B. lactis* treatment

Metagenomic suport:

Reduced abundance of inflammatory-associated bacteria (Staphylococci, Streptococci, Corynebacteria)

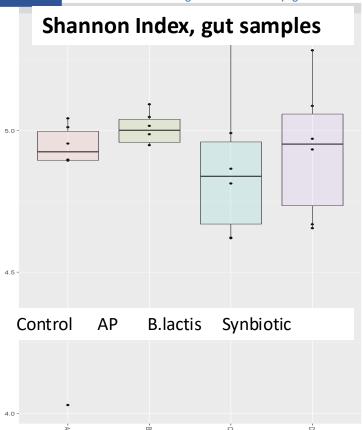
Mechanism: Lactate production by beneficial bacteria inhibits pathogens and modulates immune response Anti-inflammatory effects are achieved through both direct metabolite action and suppression of pathogenic bacteria




Functional significance

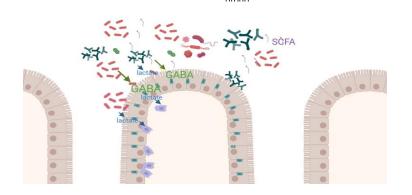
Collegium Medicum in Bydgoszcz

Host- mediated effect


All treatment conditions show statistically significant increases (p < 0.01) compared to control

← Carboxylic acids, important for cellular energy metabolism show increases after B. lactis treatment.

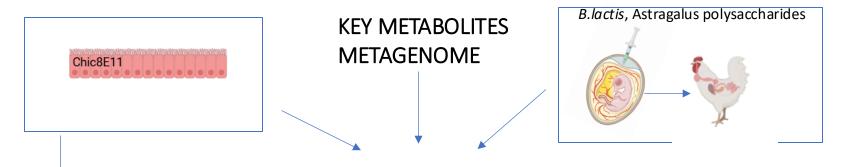
← Direct co-culture shows stronger effects


B.Lactis showed lower diversity of microbial community ->

Synbiotic group showed a more balanced microbial interaction \rightarrow

Integrative Model

Combining metabolomics and metagenomics explained the mechanisms of probiotic action



Conclusions

Translational, predictive model linking in vitro and in ovo effects

PROBIOTIC METABOLIC SIGNATURES
Carboxylic acids 个
GSH constituents 个
polyamines 个

Mapped key affected pathways: Amino acid metabolism, Energy production Antioxidant defense FUNCTIONAL INTERPRETATION

Barrier function ↑

Energy metabolism↑ and redox balance

Microbiota balance↑

Demonstrated synergistic effects of prebiotic-probiotic combinations

- Applications for probiotic screening
- •Further validation in post-hatch chickens
- Potential for personalized probiotic formulations

vobiom Acknowledgements

Krzysztof Skowron

Katarzyna Hrynkiewicz

Waldemar Studziński

Cinzia Randazzo

Giuseppe Maiorano

Niloofar Akhavan

Sanling Zuo

Mengjun Wu

Mariam Ibrahim

Anna Bajek

Research is funded by the Polish National Science Centre 2019/35/B/NZ9/03186-Ovobiom.

