

3rd EAAP Regional Meeting 2025

Effect of spent coffee grounds from filtered specialty coffee as a by-product of processing on ruminal fermentation *in vitro*

Matej Leško

Institute of Animal Physiology,
Centre of Biosciences Slovak Academy of Sciences

Coffee Plant

Coffea arabica

70% of world production 600 -1800 m.a.s.l.

Coffea canephora

30% of world production 0 – 800 m.a.s.l.

According to the **Specialty Coffee Association of America**, specialty coffee accounts for 5% of total coffee production, has a precisely defined birth certificate (origin), and earns a minimum of 85 out of 100 points on the international rating scale

- ➤ High-quality beans with known geographical origin
- ➤ Specific postharvest processing methods
- > Higher polyphenol content compared to conventional coffee

Spent Coffee Grounds

Objective

To quantify the bioactive compounds in Ethiopian specialty coffee (ETH), spent coffee grounds of ETH (SCG-ETH), and spent coffee grounds from blended specialty coffees (SCG-MIX), determine the effect of SCG-ETH on ruminal fermentation and methane emission characteristics in vitro.

Material and Methods

Material and Methods

Chemical analyses

- Nutritional analyses DM, ADF, NDF, CP, Ash
- Quantitative analyses of bioactive compounds UHRMS

In Vitro Ruminal Fermentation

- Batch culture fermentation of substrates (MH-BG, MH-SCG-ETH, BG-SCG-ETH, 1:1 w/w), rumen fluid:McDougall's buffer (1:2), 39 °C, 24 hours, n=3×3
- Measurements:
 - Total Gas, Methane concentration, SCFAs (GC)
 - In vitro dry-matter digestibility (IVDMD)
 - pH
 - Ammonia nitrogen concentration
 - Ruminal Ciliate protozoan

Table 1: Chemical compositions of the dietary substrates (n = 3)

	Dietary substrate				
	BG	MH	ETH	SCG-ETH	SCG-MIX
Dry Matter (g/kg)	895	900	962	878	908
Neutral Detergent Fiber (g/kg DM)	169	452	463	602	636
Acid Detergent Fiber (g/kg DM)	75	287	291	374	405
Crude Protein (g/kg DM)	118	124	114	105	109
Ash (g/kg DM)	25.6	96.2	42.5	8.21	11.3

BG = Barley grain; MH = Meadow hay; ETH = Ethiopian coffee; SCG-ETH = Spent coffee grounds from Ethiopian specialty coffees brewed using the filtered method; SCG-MIX = Spent coffee grounds from blended specialty coffees brewed using the filtered method

Table 2: Main bioactive compounds (mg/g DM) (n = 3, mean \pm SD)

Compound	ETH	SCG-ETH	SCG-MIX	Р
trans 3-O-Caffeoylquinic acid	1.71 ± 0.31 ^a	2.66 ± 0.21 ^b	2.45 ± 0.41 ^{ab}	0.025
cis 5-O-Caffeoylquinic acid	3.60 ± 0.71 ^a	7.35 ± 1.02 ^b	5.44 ± 0.52ab	0.003
trans 5-O-Caffeoylquinic acid	9.04 ± 1.05	13.1 ± 4.01	10.5 ± 3.01	0.306
epimer 3-caffeoylquinic acid-1,5-lactone	0.85 ± 0.11 ^a	2.33 ± 0.32 ^b	2.62 ± 0.71 ^b	0.007
3-caffeoylquinic acid-1,5-lactone	2.13 ± 0.23	1.68 ± 0.41	1.64 ± 0.02	0.124
epimer 4-Caffeoylquinic acid-1,5-lactone	0.76 ± 0.01 ^b	0.41 ± 0.03 ^a	0.45 ± 0.02 ^a	< 0.001
3,4-Dicaffeoylquinic acid	0.41 ± 0.01 ^a	1.10 ± 0.03 ^b	1.20 ± 0.47 ^b	0.023
Total content	20.9 ± 0.09 ^a	35.2 ± 0.24°	31.2 ± 0.19 ^b	< 0.001

Table 3: Effect of dietary substrates on fermentation parameters (n = 9, mean \pm SD)

_	Dietary treatments					
	MH-BG	MH-SCG-ETH	BG-SCG-ETH	P		
Total SCFA (mM)	44.6 ± 3.06	47.6 ± 6.19	47.5 ± 2.14	0.233		
Acetate (mol%)	60.9 ± 2.03	60.4 ± 2.25	59.6 ± 2.18	0.425		
Propionate (mol%)	16.8 ± 0.37^{a}	18.3 ± 0.81^{b}	16.8 ± 0.75 ^a	< 0.001		
n-Butyrate (mol%)	15.6 ± 1.22 ^b	13.2 ± 1.32 ^a	16.1 ± 1.61 ^b	0.005		
iso-Butyrate (mol%)	1.75 ± 0.208 ^a	2.29 ± 0.18^{b}	2.19 ± 0.29^{b}	< 0.001		
n-Valerate (mol%)	2.73 ± 0.698	2.98 ± 0.84	2.61 ± 1.42	0.742		
iso-Valerate (mol%)	2.26 ± 0.380	2.83 ± 0.71	2.80 ± 0.72	0.115		

BG = Barley grain; MH = Meadow hay; ETH = Ethiopian coffee; SCG-ETH = Spent coffee grounds from Ethiopian specialty coffees brewed using the filtered method; SCG-MIX = Spent coffee grounds from blended specialty coffees brewed using the filtered method. (1:1 w/w).

Conclusion

> Our research has highlighted the potential of spent coffee grounds from filter-brewed specialty coffees as a feed substitute for ruminants.

