Para J.¹, Żelazko K.¹, Gajewska M.², Zielak-Steciwko A.E.¹

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Analysis of pesticide residue levels in dairy products in Europe from 2009 to 2022

¹ Department of Cattle Breeding and Milk Production, Institute of Animal Breeding, UPWR

² Department of Physiological Sciences, Institute of Veterinary Medicine, SGGW

The role of milk and dairy products in the diet

Figure 1. Per capita consumption of <u>fresh</u> and processed dairy products in milk solids

Monitoring pesticide residues in milk is crucial due to the potential health risks for consumers.

Concerns regarding pesticide residues in food

Q: Please tell me to what extent are you worried about pesticide residues in food?

Increase in global pesticide use

Pathways of pesticide exposure in dairy cattle

Consumption of contaminated **feed is the main route** of exposure.

Pesticides also have the ability to enter the body through <u>inhalation</u> or <u>dermal</u> absorption and to accumulate in tissues and organs.

Metabolized compounds are excreted through urine and feces, but in cattle milk is also a major route of pesticide disposal.

Monitoring pesticide residue levels in food

EU MACP

EU-coordinated Multiannual Control Programme MANCP

Multi Annual National Control Plan Monitoring under European Food Safety Authority (EFSA) supervision since 2002.

Participants: <u>EU Member states</u>, Iceland and Norway.

EU MACP monitoring is conducted in three-year cycle

Table 1. The major components of the European diet chosen to monitoring in EU MACP

2009, 2012, 2015	2010, 2013, 2016	2019, 2022, 2025		
h Topulle \	Apple			
Aubergines	Head cabbages	Apples		
Bananas	Leek	Head cabbages		
Broccoli ²	Lettuces	Lettuces		
Cauliflower ⁴	Peaches	Peaches		
Orange juice	Pears ¹	Spinaches		
Olive oil ²	Rye	Strawberries		
Peas (without pods)	Oats ⁵	Tomatoes		
Peppers (sweet)	Strawberries	Oat grain		
Table grapes	Tomatoes	Barley grain		
Wheat	Wine (red or white) ³	Wine (red or white)		
Butter	Cow's milk	Cow's milk		
Chicken eggs	Swine meat ⁵	Swine fat		
7	Swine fat⁵			

¹ analyzed only in 2010

² added in 2012; broccoli as an alternative to cauliflower

³ added in 2013

⁴ discontinued in 2015

⁵ swine fat replaced swine meat; oats were discontinued

Objective

The aim of this study was to analyse pesticide residue levels in dairy products in Europe from 2009 to 2022.

Methods

- The study employed data on **pesticide residues** and their metabolites in **milk** and **butter** derived from <u>annual reports</u> of the EU-coordinated Multi Annual Control Programme (**EU MACP**) for the years 2009, 2010, 2012, 2013, 2015, 2016, 2019 and 2022.
- Descriptive statistics were performed based on the data collected from the EFSA database in the Zenodo repository.

Monitoring pesticide residue levels in food

Table 2. Total number of samples taken in EU-coordinated programmes, number of participating countries and number of samples taken by Germany, Poland and Greece in EU-coordinated programmes in years 2009–2022

	2009	2010	2012	2013	2015	2016	2019	2022
TOTAL (n)	473	654	692	1021	616	582	706	486
PARTICIPATING COUNTRIES (n)	29	29	29	29	30	30	33	33
DE (n) - an example	68	94	N/A	N/A	N/A	118	197	119
PL (n) - an example	50	1	N/A	N/A	N/A	45	55	53
EL (n) - an example	16	0	N/A	N/A	N/A	15	5	0

N/A – data not available due to lack of publicly accessible records in Zenodo

Results – pesticides detected in butter samples

Figure 2. Percentage of butter samples with measurable residues for the specific pesticide in 2009, 2012 and 2015

Results – pesticides detected in milk samples

Figure 3. Percentage of milk samples with measurable residues for the specific pesticide in 2010, 2013, 2016, 2019 and 2022

Results – exceedances of permissible limits

Figure 4. Percentage of samples not measurable, below MRL and above MRL for butter and milk in the EU-coordinated programmes in years 2009–2022

Results – multiple residues in butter and milk samples

Table 3. Number of detectable residues in individual butter and milk samples (2009-2022)

Number of pesticides reported in butter and milk samples (2009-2022)

Figure 5. Number of specific pesticides reported for butter and milk in the EU-coordinated programmes and total number of samples analysed in years 2009–2022

Conclusion

- From 2009 to 2022, only trace amounts of pesticides were detected in milk and butter samples.
- The MRL was exceeded only in 2009, in three butter samples.
- A concerning trend is the <u>decreasing number</u> of samples analyzed.

- The 2025 sample collection is still uncertain.
- FSA's decision on including milk in the next three-year cycle will be announced.

Acknowledgements

Anna Zielak-Steciwko, DSc, university professor Institute of Animal Husbandry and Breeding, Faculty of Biology and Animal Science, UPWR in Wroclaw;

Małgorzata Gajewska, DSc, university professor Department of Physiological Sciences, Institute of Veterinary Medicine, SGGW in Warsaw.

Thank you for your attention

50-375 Wrocław ul. Norwida 25 Centrala: tel. 71 320 5020

Kancelaria Ogólna: tel. 71 320 5130

www.upwr.edu.pl