

Camelina sativa L. Cake Reduces Enteric Methane Emissions in Polish Holstein Friesian Heifers by Suppressing Methanogen Activity Without Compromising Digestibility

<u>J. Sznajder¹</u>, D. Lechniak-Cieślak¹, P. Sidoruk¹, P. Pawlak¹, J. Łechtańska¹, J. Szczesny¹, S. Olorunlowu¹, D. Petrič², Z. Váradyová², M. Szumacher ¹, R. Y. Yulianri³, A. Irawan⁴, A. Cieślak¹

¹Poznań University of Life Sciences, , Wojska Polskiego 28, 60-637 Poznań, Poland, 2 Centre of Biosciences of Slovak Academy of Sciences, Šoltésovej 4-6, 040-01 Košice, Slovakia, 3 Universitas Padjadjaran, Jantinangor, 45363 West Java, Indonesia, 4 Universitas Sebelas Maret, Kentingan No.36, 57126 Surakarta, Indonesia

Introduction

- Renewed interest: an oil plant with minimal cultivation requirements and tolerance to water shortage
- Cake, by-product

Ibrahim and Habbasha 2015; Paula et al 2019

Alternative plant feed resources

Increase the sustainability of animal production

Increase efficiency of feed for ruminants

Reduce environmental burdens

Giamouri et al., 2023; Meli et al., 2023

Introduction

- Methane (CH₄) emissions from ruminants - critical issue in livestock production
- Valuable feed ingredient that can support animal health and improve energy utilization in ruminants
- Rich source of alpha-linolenic acid

(Bayat et al., 2015; Riaz et al., 2022)

Hypothesis

Camelina sativa L. cake:

- Rich source of C18:3 n-3;
- Valuable dietary component mitigating enteric methane emission and ammonia production;
- No negative impact on dry matter intake, and ruminal fermentation.

The goal

• To evaluate the effect of Camelina sativa L. cake, a source of C18:3 n-3, on enteric methane and ammonia emission, dry matter intake, and ruminal fermentation.

Materials & Methods & POZNAN UNIVERSITY OF LIFE SCIENCES

- Eight Polish Holstein-Friesian heifers (369 ± 31 kg body weight);
- Two groups: control and experimental; n=4;
- CON Rapeseed meal
- EXP Camelina sativa L. cake

Materials & Methods & Poznan UNIVERSITY OF LIFE SCIENCES

Item (g/kg DM)	Control	Experimental	
Grass silage	388	388	
Maize silage	206	206	
Beet pulp	119	119	
Rapeseed meal	133	133	
Meadow hay	119	119	
Mineral blend	35	35	

1 kg rapeseed meal 1 kg *Camelina sativa* cake

Translation	FACULTY OF VETERINARY MEDICINE AND ANIMAL SCIENCE
-------------	---

Fatty acids (g/100g FA)	Control	Experimental
C16:0	17.4	12.3
C18:0	5.89	5.76
C18:1cis 9	24.7	21.1
C18:2c9c12	38.7	33.7
C18:3c9c12c15	7.99	19.2

- Crossover design;
- 26-d experiment (21 d aptation +5 d sampling period;
- Four respiration chambers (SPA system, Ltd., Wroclaw, Poland).

- Individual dry matter intake;
- Rumen fluid collection by stomach tubing (Ruminator, Profs Products, Wittybreut, Germany).

- pH;
- Ammonia and VFA concentration;
- Rumen microbial community analysis;
- Fatty acids profile;
- Microbial characteristics;
- <u>Data analysis:</u> Rstudio Version 2022,
 One-way ANOVA, Student's t-test

Rumen fluid parameters and protozoa counts

Items	Control	Experimental	SEM	P_value
Total VFA, mM	86.4	93.9	1.404	0.054
Propionate, mM	16.9	21.0 24	1.059	0.001
Iso-valerate, mM	1.68	1.88	1% 6.761	0.044
Acetate/Propionate ratio	3.49	2.91	<mark>7%</mark> 7.161	0.001

Methane emission (g/kg DMI)

Ammonia concentration g/kg DMI

Dry matter intake (g/day)

mcrA gene (copy number)

Conclusion

- Addition of 1kg/day of Camelina sativa L. cake to the heifer's diet caused mitigation of enteric methane emissions and ammonia concentration without a negative impact on dry matter intake and ruminal fermentation, which confirms the hipothesis
- Thus, Camelina sativa L. cake as a rich source of C18:3 n-3 is a valuable dietary component.

FACULTY OF VETERINARY MEDICINE AND ANIMAL SCIENCE

Thank you for your attention!